Some conjectures on the zeros of approximates to the Riemann Ξ-function and incomplete gamma functions
نویسنده
چکیده
Riemann conjectured that all the zeros of the Riemann Ξ-function are real, which is now known as the Riemann Hypothesis (RH). In this article we introduce the study of the zeros of the truncated sums ΞN (z) in Riemann’s uniformly convergent infinite series expansion of Ξ(z) involving incomplete gamma functions. We conjecture that when the zeros of ΞN (z) in the first quadrant of the complex plane are listed by increasing real part, their imaginary parts are monotone nondecreasing. We show how this conjecture implies the RH, and discuss some computational evidence for this and other related conjectures.
منابع مشابه
Zero Spacing Distributions for Differenced L-Functions
The paper studies the local zero spacings of deformations of the Riemann ξ-function under certain averaging and differencing operations. For real h we consider the entire functions Ah(s) := 1 2 (ξ(s + h) + ξ(s− h)) and Bh(s) = 1 2i (ξ(s+ h)− ξ(s− h)) . For |h| ≥ 1 2 the zeros of Ah(s) and Bh(s) all lie on the critical line R(s) = 1 2 and are simple zeros. The number of zeros of these functions ...
متن کاملPair correlation of the zeros of the derivative of the Riemann ξ-function
Abstract. The complex zeros of the Riemannn zeta-function are identical to the zeros of the Riemann xi-function, ξ(s). Thus, if the Riemann Hypothesis is true for the zetafunction, it is true for ξ(s). Since ξ(s) is entire, the zeros of ξ(s), its derivative, would then also satisfy a Riemann Hypothesis. We investigate the pair correlation function of the zeros of ξ(s) under the assumption that ...
متن کاملGeometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function
Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.
متن کاملCounting distinct zeros of the Riemann zeta-function
Bounds on the number of simple zeros of the derivatives of a function are used to give bounds on the number of distinct zeros of the function. The Riemann ξ-function is defined by ξ(s) = H(s)ζ(s), where H(s) = 2s(s−1)π 1 2 Γ( 1 2 s) and ζ(s) is the Riemann ζ-function. The zeros of ξ(s) and its derivatives are all located in the critical strip 0 < σ < 1, where s = σ+ it. Since H(s) is regular an...
متن کاملNew analytic algorithms in number theory
1. In t roduc t ion . Several recently invented number-theoretic algorithms are sketched below. They all have the common feature that they rely on bounded precision computations of analytic functions. The main one of these algorithms is a new method of calculating values of the Riemann zeta function at multiple points. This method enables one to verify the truth of the Riemann Hypothesis (RH) f...
متن کامل